Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

На дворе 21 век трансформаторных блоков питания остается все меньше, т.к им на смену пришли импульсные блоки питания, иначе их еще называют бестрансформаторным. Почему это протзошло? Во первых импульсные блоки питания куда более компактны, легче и дешевле в производстве. По мимо этого КПД импульсных блоков может доходить до 80%.

Лабораторный блок питания

В рамках нашей статьи рассмотрим наиболее интересные схемы импульсных блоков питания с использование различных схемотехнических решений. Но сначала разберем принцип работы импульсного блока питания. (ИБП)

Практически все существующие сегодня импульсные источники импульсного питания незначительно отличаются по конструкционному исполнению и работают по одной, типичной схеме.

В состав основных компонентов и блоков ИБП входят:

сетевой выпрямитель, типовой вариант состоит из: входных дросселей, электромеханического фильтра, обеспечивающего отстройку от помех и развязку статики с конденсаторами, диодного моста и сетевого предохранителя;
фильтрующей емкости;
силового транзистора работающего в ключевом режиме;
задающий генератор;
оптопары;
схема обратной связи, построенной обычно на транзисторах;
выпрямительные диоды или диодный мост выходной схемы;
Схемы управления выходным напряжением
фильтрующие емкости;
силовые дроссели, выполняют функцию коррекции напряжения и его диагностики в сети

Пример печатной платы типового импульсного блока питания с кратким обозначением радиоэлектронных узлов показан на рисунке ниже:

Как работает импульсный блок питания?

ИБП выдает стабилизированное напряжение за счет применения принципов взаимодействия компонентов инверторной схемы. Переменное сетевое напряжение 220 вольт идет по проводам на выпрямительное устройство. Его амплитуда сглаживается емкостным фильтром за счет применения конденсаторов, выдерживающих пики до 300 вольт, и отделяется помехоподавляющим фильтром.

Диодный мост выпрямляет проходящие через него переменное напряжение, которые затем преобразуются схемой реализованной на транзисторах. Далее высокочастотные импульсы прямоугольной формы следуют с заданной скважностью. Они могут преобразовываться:

с гальванической развязкой от питающей сети выходных цепей;
без развязки.

В первом случае ВЧ импульсы следуют на импульсный трансформатор, осуществляющий гальваническую развязку. За счет высокой частоты получается отличная эффективностьприменения трансформатора, снижаются габариты магнитопровода, а следовательно и вес конечного устройства.

В подобных схемах ИБП работают три взаимосвязанных цепочки: ШИМ-контроллер; транзисторный каскад из силовых ключей; импульсный трансформатор

Каскад из силовых ключей обычно состоит из мощных полевых, биполярных или IGBT транзисторов. Для последних, как правило, создана отдельная система управления на других маломощных транзисторах либо ИМС (драйвера). Силовые ключи могут быть реализованы по различным схемам: полумостовой; мостовой; или со средней точкой.

Импульсный трансформатор его обмотки, размещены вокруг магнитопровода из альсифера или феррита. Они способны передавать ВЧ импульсы с частотой следования до сотен кГц. Их работу обычно дополняют цепочки из стабилизаторов, фильтров, диодов и других элементов.

В ИБП без гальванической развязки высокочастотный разделительный трансформатор не применяется, а сигнал следует сразу на фильтр нижних частот.

Особенности стабилизации выходного напряжения в ИБП

Все ИБП имеют в своем составе радио компоненты, реализующие отрицательную обратную связь (ООС) с выходными параметрами. Поэтому они обладают отличной стабилизацией выходного напряжения при плавающих нагрузках и колебаниях сети питания. Методы реализации ООС зависят от используемой схемы для работы ИБП. Она может реализоваться у ИБП, работающих с гальванической развязкой за следующий счет:

Промежуточного воздействия выходного напряжения на одну из обмоток ВЧ трансформатора;
Испоьзования оптрона.

В обоих вариантах эти сигналы управляют скважностью импульсов, подаваемых на выход ШИМ-контроллера. При применении схемы без гальванической развязки ООС обычно создается за счет подсоединения резистивного делителя.

Импульсный блок питания на специализированной микросхеме для слабомощной нагрузки

Простой импульсный блок питания схема которого реализована на микросхеме HV-2405Е в своем внутреннем составе содержит предварительный импульсный стабилизатор напряжения и выходной линейный стабилизатор.

Величина тока, которую способен выдать импульсный блок питания, зависит от емкости C1. Конденсатор С2 адает временную задержку активации микросхемы для стабилизации переходных процессов. Емкость C3 используется для уменьшения пульсации выпрямленного выходного напряжения.

Термистор R1 защищает микросхему от пробоя током заряда конденсатора С1. В схеме был использован малогабаритный термистор марки MZ21-N151RM.

Для получения выходного напряжения в 18 В резистора R1 должен быть составлять 13 кОм, для 15 В - 10кОм,для 12 В - 6,8кОм, а для 9 В - 3,9 кОм.

Импульсный блок питания на на IR2153

Микросборка IR2153 это универсальный драйвер управления полевыми и IGBT транзисторами. Разрабатывалась она специально для использования в схемах электронного балласта энергосберегающих ламп, поэтому её функциональные возможности при конструирование блока питания немного ограничены. Микросхема позволяет создать на ее базе простой и надежный источник питания.

Импульсный блок питания на 5 вольт на основе конденсаторного делителя

Делитель напряжения, собран на неполярном бумажном конденсаторе С1 и электролитических конденсаторах С2 и СЗ, которые создают неполярное плечо сумарной емкостью 100 микрофарад.

Два левых по отношению к схеме диода являются поляризующими к конденсаторной цепи. При указанных номиналах радиокомпонентов, ток короткого замыкания будет около 0,6А, а напряжение на выводах емкости С4 при отсутствие нагрузки приблизительно равно 27 В.

Импульсный блок питания на отечественной элементной базе на 5 и 12 вольт

Первичная обмотка трансформатора Т2 преобразователя подсоединена в диагональ моста, образованного транзисторами VT1, VT2 и емкостями С9, С10. Базовые цепи транзисторов питаются от второй и третей обмоток трансформатора Т1, на первичную обмотку которого идет ступенчатое напряжение с формирователя, построенного на микросхемах DD1, DD2.

Импульсный блок питания

Задающий генератор формирователя выполнен на инверторах DD1.1, DD1.2 и генерирует колебания частотой 120 кГц. Импульсы с выходов триггеров DD2.1 с частотой 60 кГц и DD2.2 с частотой30 кГц идут на входы элементов DD1.3 я DD1.4, а уже на их выходах генерируются импульсные последовательности со скважностью 4.

Осциллограммы импульсов

Трансформатор Т1 предает это ступенчатое напряжени на базу транзисторов VT1, VT2 работающих в ключевом режиме и поочередно открывает их.

Два источника выходного напряжения выполнены на стабилизаторах напряжения серии К142. Так как, выпрямленное напряжение импульсное на входах фильтров установлены оксидные конденсаторы К52-1 небольшой емкости, хорошо работающие на данной частоте преобразования.

Схема импульсного блока питания собрана на печатной плате из двустороннего фольгированного стеклотекстолита. Со стороны радиокомпонентов фольга сохранена и является общим проводом.

Печатная плата и расположение элементов на плате

Транзисторы устанавливаются на радиатор размерами 40 на 22 мм.

В схеме применены постоянные сопротивления С2-1 (R7) и МТ, подстроечный резистор СП3-196 (R9), емкости КТП-2а (С1, С2), К50-27 (С4, С5), К52-1 (С7, C11, C16, С20), K73-17 на номинальное напряжение 400 (С3) и 250 В (С9, С10), КМ-5 (С6, С14) и КМ-6 (остальные). Индуктивности L1, L2, L4 - ДМ-2,5 L3 - ДМ-0,4.

Первый трансформатор собран на кольцевом магнитопроводе К 10Х6Х5 из феррита 2000НМ. Его первичная обмотка состоит из 180 витков провода ПЭЛШО 0,1, 2 и 3 обмоткиимеют по 18 витков ПЭЛШО 0,27. Магнитопровод второго трансформатора К28Х16Х9 из феррита марки 2000НМ. Его первичная обмотка состоит из 105 витков провода ПЭЛШО 0,27, обмотки 2 и 4 из 14 и 8 витков монтажного провода МГТФ сечением 0,07 мм , 3-я обмотка из 2Х7 витков ПЭВ-2 диаметром 1 мм.

БП на основе готового импульсного трансформатора от компьютерного ATX

Основа конструкции полумостовой драйвер на микросхеме IR2151. Сигнал с генератора усиливается каскадом на мощных полевых транзисторах. Резистор 47к должен быть с мощностью от 2 ватт. Диод FR107 можно заменить на FR207 и т.п. Электролитические конденсаторы необходимы для сглаживании пульсаций и снижения уровня сетевых помех, их емкость от 22 до 470 мкф. Предохранитель на 3 ампера. Импульсный трансформатор позволяет получить двухполярное напряжение 12 или 2 вольт, поэтому на выходе можно получить 5, 10, 12 и 24 вольта.

БП на основе импульсного трансформатора

Таким БП можно запитать мощные УНЧ или же приспособить его под 12 вольтовый усилитель из серии TDA. Если БП дополнить регулятором напряжения, то можно собрать полноценный импульсный лабораторный блок питания.

импульсный трансформатор от компьютерного БПБП в сборе

Выпрямитель лучше всего собрать на ультрабыстрых диодах на 4-10 ампер их можно позаимствовать из того же компьютерного блока питания. Этот блок питания можно применить еще в качестве зарядного устройства для автомобильного аккумулятора, так как выходной ток более 10 ампер.

Блок питания своими руками из старого АОНа

Помните были такие популярные в свое время телефоны наподобие Русь 26. К каждому из них шел не плохой сетевой адаптер имеющий на выходе два стабилизированных напряжения +5В и +8 В при токе нагрузки до 0,5 А его можно использовать для питания множества радиолюбительских самоделок и сегодня.

Рассмотрим схему этого БП:

Блок питания из адаптера старого Аона

Напряжение сети 220 В через замкнутые контакты тумблера SA1 и защитное сопротивление R1 идет на первичную обмотку трансформатора Т1. Со вторичной обмотки оно пониженое до 11 В переменного тока, выпрямляется выпрямителем, на диодах Шотки VD1 - VD4. Использование таких диодов снижает потери мощности на выпрямителе примерно на 1 В повышает напряжение на конденсаторе фильтра С7.

Импульсный блок питания содержит два линейных стабилизатора DA1 и DA2. Первый выдает стабилизированное выходное напряжение +5 В, а второй +8 В.

Тумблером SB1 можно выбирать напряжение +5 В или + 8 В. При этом, если тумблер находится в положении «+5 В», загорается светодиод HL2, если в положении «+8 В», то HL3.

Для удобства, на выход канала «+5 В» можно добавить USB-розетку и использовать для наладки устройств с питанием от USB порта компьютера.

Импульсный блок питания из старой энергосберегающей лампочки

Подробная инструкция для изготовления самодельных импульсных блоков питания разной мощности на основе электронного балласта старой люминесцентной лампы. Электронный балласт это почти готовый импульсный Блок Питания, но в ней отсутствует разделительный трансформатор и выпрямитель.

Плюсы и минусы импульсных блоков питания

Плюсы ИБП над стандартными аналоговыми

При сравнении конструкций БП с одинаковыми показателями выходных мощностей ИБП обладают следующими преимуществами:

Cниженный вес и габариты ИБП можно объяснить переходом от преобразований НЧ энергии мощными и тяжелыми силовыми трансформаторами с управляющими системами, расположенными на огромных радиаторахи работающими в линейном режиме, к технологиям импульсного преобразования. За счет роста частоты обрабатываемого сигнала снижается емкость конденсаторов у фильтров и, поэтому, их габариты. Также упрощается схемотехника выпрямления.
Повышенный КПД - У НЧ трансформаторов существенная доля потерь возникаеи за счет рассеивания тепла при электромагнитных преобразованиях. В ИБП максимальные потери энергии возникают во время протекания переходных процессов при коммутациях каскадов. А в остальное время ключевые транзисторы находятся в строго устойчивом состоянии: открыты или закрыты. При этом создаются все условия для минимума потер, при этом КПД может доходить до 90-98%.
Более низкая стоимость;
Расширенный диапазон питающих напряжений - импульсные технологии позволяют запитывать БП от источников с разной амплитудой и частотой. Это расширяет область применения с различными электростандартами.
Встроенная защита. Благодаря применению малогабаритных полупроводниковых модулей, в конструкцию ИБП удается встроить защиту, контролирующую возникновение токов коротких замыканий (КЗ), отключения нагрузок на выходе устройства и другие аварийные ситуации.

Недостатки ИБП

Высокочастотные помехи, т.к они работают по принципу преобразования ВЧ импульсов, то они в любом исполнении генерируют помехи, транслируемые в пространство. Это создает дополнительное требование связанное с их подавлением различными методами.

В некоторых случаях помехоподавление может быть неэффективным, что исключает применении ИБП для отдельных типов точной цифровой техники.

Ограничения по мощности ИБП имеют противопоказание к работе не только на повышенных, но и при пониженных нагрузках. Если в выходной цепи случится резкое падение тока за пределы критического значения, то схема запуска может сглючить или ИБП станет выдавать напряжение с искаженными свойствами.




Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией

Металлоискатель своими руками с индикацией